Triple-negative breast cancer (TNBC) urgently requires new therapeutic strategies due to the limited efficacy of conventional treatments. Recently, PANoptosis, an integrated form of apoptosis, necroptosis, and pyroptosis, has emerged as a promising target in cancer therapy, though effective agents remain scarce. Paclitaxel, a Taxus-derived natural product, is often combined with other drugs to enhance efficacy, yet optimal combinations are limited. This study investigates the synergistic antitumor effects of paclitaxel and cephalomannine in TNBC, focusing on oxygen-regulated cell death pathways. Network pharmacology and molecular docking revealed that the combination targets multiple cell death- and inflammation-related proteins, including BCL2L1, MAPK14, SYK, TNF, and ADAM17, suggesting multi-target synergy. In vitro, the combination significantly inhibited MDA-MB-231 cell viability, proliferation, and migration, while inducing apoptosis and necrosis. Mechanistically, co-treatment markedly increased intracellular ROS levels and γ-H2AX expression, indicating oxidative stress and DNA damage, both of which were reversible by ROS inhibition. Further analysis demonstrated that the treatment activated the p38 and p53 pathways, regulated the Bax/Bcl-2 ratio, and initiated mitochondrial apoptosis. It also promoted RIPK1/RIPK3/MLKL phosphorylation and MLKL membrane translocation, triggering necroptosis, as well as upregulated NLRP3, cleaved Caspase-1, and GSDMD, inducing pyroptosis. The use of specific inhibitors partially reversed these effects, confirming the involvement of ROS-mediated PANoptosis. Similar antitumor effects were also observed in BT-549 cells, indicating the broad applicability of this combination in TNBC. MCF-10A cells exhibited mild but acceptable cytotoxicity, reflecting manageable side effects typical of chemotherapeutic agents. In vivo experiments further validated the combination’s antitumor efficacy and safety. In summary, paclitaxel and cephalomannine synergistically induce PANoptosis in TNBC through oxygen-regulated cell death pathways, offering a novel therapeutic strategy based on oxidative stress modulation by natural compounds.
Keywords: triple-negative breast cancer; paclitaxel; cephalomannine; oxidative stress; programmed cell death; PANoptosis